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1. INTRODUCTION

A major problem in the application of control theory is the fact
that any mathematical model used for design or analysis is only an approxi-
mation to the true physical system. The error between the mathematical
model and the system itself (or plant) has many causes. For example, coef-
ficients that are assumed comstant in the model may in reality be time
varying. Also, the system may be too complex to be accurately described by
a mathematical model that is feasible for design and analysis purposes.

This is usually the case since a feasible model is typically restricted to
be linear, time invariant, and finite dimensional.

Consequently, it is important to be able to design a controller so
that the plant model-controller system (or nominal system) {s as tolerant to
plant wariations as possible. This tolerance is important in two ways.
First, the nominal system must remain stable under the expected range of
plant variations. This system quality is often referred to as the robust-
ness of the gystem. Second, the input output (I/0) characteristics of the
nominal system should be as insensitive as possible to these variations. The
nominal system is said to have good sensitivity properties 1f the effect of
these variations on the I/0 response is reduced from the effect on the plant
alone.

The field of control theory is based upon the fact that feedback
can be used to improve these and other important system qualities ([1],{2].
For example, the effect of uncontrollable plant disturbances on the output

of the plant can be reduced by feedback. Feedback controllers can also be

..............
.....................




KA ACICI A AP AL S e bt St et

used to achieve a desirable 1/0 response, although this in itself does not
necessarily require feedback [3].

The synthesis of closed loop controllers for single-input single-
output (SISQO) systems with these properties is well understood. Root locus
plots, Nyquist diagrams, and other classical frequency domain techniques are
readily used for design. The Nyquist diagram is particularly helpful since
the distance from the Nyquist locus to the critical point (called the return
difference function) provides a measure of the disturbance rejection and
command following properties as a function of frequency. In additiomn, when
the plant uncertainties are modeled by additive perturbations the return
difference function is also a measure of robustness and sensitivity. When the
uncertainties are modeled by multiplicative perturbations, the distance of
the inverse‘Nyquist locus from the critical point provides this measure.

Unfortunately, these well-tested design techniques for SISO systems
do not have an easy generalization to multiple-input multiple-output (MIMO)
systems. Several problems unique to MIMO systems arise. For example, mani-
pulations with transfer function matrices are more difficult since matrix
multiplication is not commutative. Thus robustness and sensitivity margins
are dependent on where the perturbation is inserted in the loop. Also, the
perturbations not only have a fequency dependence, but a spatial dependence
as well. In other words, uncertainties may occur only in certain loops.

Despite these problems, some useful generalizations of the
classical theory to MIMO systems have recently been made [4-7]. These
generalizations involve the return difference matrix or the inverse Nyquist
matrix (these are the MIMO counterparts of the scalar functions). For

example, when the return difference matrix of a nominally stable,
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additively perturbed system is singular at some frequency, it means that a o1
zero pair of the characterisitc equation lies on the imaginary axis. Thus f
- for all stable additive perturbations that are smaller than the smallest
perturbation that causes singularlity, the system will be stable. Hence the =
distance of the return difference matrix from singularity provides a measure ‘
of the stability margin of the system under stable additive perturbatioms. fé
This is a direct generalization of the SISO case where the distance of the v
Nyquist locus from the critical point represents the degree of stability,
which is measured by the classical gain and phase margins. Furthermore, it
can be shown that the return difference and inverse Nyquist matrices also 8
/ reflect the sensitivity, disturbance rejection, and I/0 properties of MIMO 5:
systems.
When the standard Euclidean coordinates and corresponding norm are T?
used to describe the system, this distance from singularity can be conve-
niently computed in terms of matrix singular values. Several singular value
inequalities for robustness and sensitivity under additive or multiplicative
perturbations are available [8].
: The design requirements on robustness, sensitivity, disturbance
rejection and I/0 response translate into bounds on these singular value
curves (as functions of frequency). Thus a major design objective is to

synthesize a controller that adjusts the singular value curves of the return

|

difference or inverse Nyquist matrix into some desirable shape. If the
mathematical structure of the controller is predetermined, it is possible
to calculate the gradient of these singular values with respect to the

adjustable parameters of the controller (or control parameter vector). The

T e
s I o e
L Py . .

gradient will be a function of the control parameter vector and frequency.
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Given an initial control parameter vector and a constant frequency, the
gradient indicates how to change the initial control parameter vector to
have the greatest possible effect on the singular value curve at that
frequency.

In order to deform the entire singular value curve to fit specifi-
cafions, it will generally be necessary to follow an iterative select-
evaluate-adjust design procedure. Each time a new control parameter vector
is selected, the singular values must be analyzed. If the singular values
are not satisfactory, the gradient can be recalculated at the frequency of
interest, and the control parameter vector readjusted. Then the singular
values are analyzed again, and so on.

The success of the design depends on the capability of the designer.
to use the gradient information along with his insight into the particular
system to determine how to adjust the parameter vector to set the desired
effect on the closed loop system. This design method is obviously highly
dependent on the particular problem under conmsideration. However, if the
designer 1s using a standardized synthesis method at each design iteration
to adjust the controller, such as the linear quadratic (LQ) design method,
the gradient computations can be formulated explicitly.

The solution of the full state feedback LQ problem is a comstant
gain feedback matrix that optimizes a cost functional which contains weighted
quadratic state and control terms [9]. These weights are the choice of the
designer, and determine the feedback gain matrix. An advantage of the LQ
des! 1 metho”’ 3 that it provides a systematic, numerically feasible method
for cl.czsing a feedback gain matrix with relatively small gains (if all of

the state weights are set to zero then the minimum energy regulator solution

i

‘ ’i ."n‘:'

[P
YR

TRl




results). By scaling these weights the LQ method can be used for approxi-

mate pole placement [10]. Also, the LQ loop has inherently good robustness
and sensitivity properties [11],[12].

A disadvantage of the LQ design is that it is not directly obvious
how to choose these weights to achieve a given set of design specifications.
In particular, it is not at all obvious how to choose these weights to alter
the singular values of the return difference and inverse Nyquist matrices,
and thus affect the robustness and sensitivity properties of the system.

In this thesis, explicit formulas for the gradient of the singular
value functionals of the return difference and inverse Nyquist matrices are
derived for the LQ problem.  This gradient information can be used iteratively
to tune the state and control weights to shape the singular values as a
function of frequency and thus obtain desired robustness and sensitivity
properties.

In Section 2, basic properties of singular values are reviewed.
then the applications of singular value analysis in control theory such as
multivariable Bode plots and robustness-sensitivity bounds are discussed.
The Lyapunov operator is defi;;d, aad the differential and gradient concepts
are reviewed. Sensitivity formulas for the eigenvalues and singular values
of a matrix are developed.

Section 3 contains a discussion on MIMO loop shaping in the fre-
quency domain, and how desirable system properties translate into require~
ﬁents on the smallest singular value of the return difference matrix and the

inverse Nyquist matrix. Following this, general sensitivity formulas for

these singular value functionals are derived, and an iterative design method
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is proposed for manipulating these functionals. This theory is then applied

JENA |

to the LQ problem to obtain specific results.

PPN

Finally, Section 4 presents an example application of the method

developed in Section 3. The design method of Section 3 and an asymptotic “
=

design method are compared. Section 5 summarizes the thesis and discusses

further research possibilities. 3
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2. SINGULAR VALUES IN CONTROL THEORY

In this section the basic background needed for the presentation
of Section 3 1is reviewed. Singular values and their rcle in the analysis of
robustness and sensitivity of feedback systems are discussed in general.
Vector space and gradient concepts are reviewed as a preliminary to dif-

ferential eigenvalue and singular value formulas.

2.1. The Singular Value Decomposition and Near Singular Matrices

In control theory it is often desirable to measure the nearmess to
singularity of a matrix. The following theorem provides such a measure.
Theorem 2.1: Suppose that A and AA are nxn matrices, and that the inverse A-1

exists. Then, the inverse

(a+aa)~t (2.1)
exists if -1.-1

FaAl < 1A 70 (2.2)
where I+l is the standard induced Euclidean norm. 0

Proof: ([13].

The matrix AA is an arbitrary additive perturbation. Since the
inverse in equation (2.1) will exist for every perturbation that satisfies
equation (2.2), the magnitude of the functional nAflu-l indicates how sensi-
tive a matrix is to changes in its entries. For example, if the value of
IAfll-l is small, then a small change in an element of A could cause
singularity.

Motice also that equation (2.2) is only a sufficient condition. This

means that the matrix A+ AA may or may not be singular for a given pertur-

bation that violates equation (2.2).
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A singular value of an arbitrary complex valued mxn matrix A is

denoted by oi(A), and is defined by

A H
o, (&) =Y, (A7) (2.3)

for each
i-zl’ouo’g

where A
2 = min{m,n}.
Here, Ai(-) is the ith eigenvalue of the indicated matrix. Notice that
singular values are defined for nonsquare matrices in gemeral. Also, singular
values are always nonnegative real numbers since any positive semidefinite
hermitian matrix has eigenvalues that aré real and nonnegative.
Theorem 2.2: Any matrix A€ men of rank 2 has a singular value decomposition
gi;en by

A= urvt (2.4)

where UE cmxz and V€ cnxl are unitary matrices and where

z = diag{Ul,Oz,‘.-,Uz} (2'5)
with
0) 20,2 .00 20,. (2.6)
Proof: [13]. (m
From equation (2.4),
alay = vi2, 2.7

Hence the columns of V are orthonormal eigenvectors of the hermitian matrix
AHA. These vectors are denoted v, and are called the right singular vectors.
By convention, the \ in equation (2.7) are ordered so that inequality (2.6)

is satisfied. Also from equation (2.4),
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aally = uz?, (2.8)
The columns of U are denoted u, and are termed the left singular vectors.
t Some useful properties of singular vectors are given below.

Corollary 2.3:

(1) The right and left singular vectors are related by
Avi =g 194

H
A ui oivi'

(2.9)

(2) 1f A is invertible, where A& cnxn’ then the singular values of A.l are

related to those of A by

-1 1
o, (A7) = s i=1,...,n. (2.10)
i °n+l-i(A) .
(3) The induced Euclidean norm is given by
al, = ol(A). (2.11)
Proof: ([13]. O
E.j} Property (2) allows Theorem 2.1 to be interpreted in terms of
Sy
singular values. Equation (2.2) is equivalent to
*‘-: 3(oa) < oA™Y (2.12)
3 where A
' g() = 0'1(')
A (2.13)
;;j, a(s) = on(').

Inequality (2.12) plus the fact that there exists a perturbation 4A such
that G(8A) = g(A) and A+ AA is singular means that the smallest singular value

of a matrix is the distance from that matrix to the nearest singular matrix.
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Singular Values in Control Theory

Suppose that P*(jw) is a mxn rational transfer function matrix of

..

efatat
a0l

PRSI

a multiple input-multiple output (MIMO) linear system, with

y(3w) = PEw)u(iw), yEC*, uec”. (2.14)

]

Then, it has been shown [14] that for all w,

* < l \ W || - % .
g@* ) < RIS < 3o 219
where 3(P*(jw)) is the least upper bound and gﬁP*(jw)) is the greatest lower
bound of the above wvector ratio. ;,"'i
If we let lu(jw)i =1, then the output ly(jw)l is bounded between )
the two singular values at . a given w for any input direction. A frequency =
plot of these singular values can be regarded as the MIMO generalization of ::
a single input-single output (SISO). Bode magnitude plot (see Figure 2.1). )
The interpretation of a Bode magnitude plot as a rms sinusoidal * 3
power gain curve also carrys over to the MIMO case [15]. Suppose that an 91
input
u(t) = ucos wt *
od
(where u is a vector of constants) is applied to the system of equation (2.14). iy
The sum of the mean squared power of each input signal is E
w (0T 1 T 3
SMSPT = o= [ u(t)u(t)dt = = u'u.
LA 2
The sum of the mean squared power of the outputs ~4
2n ]
-

w
W T
SMSPO 27?(})’ Ygq (B)Y g (B)dE
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where yss(t) is a vector of steady state (sinusoidal) outputs. Then, the 1
ratio of mean squared power out to mean squared power in is bounded by the

squares of the singular values of P*(jw) for every input direction u ]

* 2 SMSPO Iy 2
- g(P"(Jw))” = gyepy S F(PT(Jw))".
Eii Singular values have another extremely important interpretation in

£ the robustness analysis of MIMO systems. A closed loop feedback system is
said to be robust if it remains stable when the true plant, P(jw) varys from

the nominal model P*(jw) that was used to design the feedback controller.

This difference between the real plant and the mathematical repre-

sentation can be modeled in many ways. Three models which have proven useful

0 for analysis are:

(1) Additive perturbations ' 1
P(Ju) = P*(ju) + 4P, (Ju) (2.16) ﬂ

where P(jw) is the true plant, P*(juw) is the nominal model, and APA(jw) ﬂ

Y

is an unknown quantity.

(2) Multiplicative input perturbations
P(jw) = P*(jw)(I+APM(jw)). (2.17) .
(3) Multiplicative output perturbations
P(Ju) = (I+ 4B, (Ju))P*(ju). (2.18)

Bounds expressed in terms of singular values have been derived

that relate the nominal plant to the magnitude of the perturbation that can be

B as’

tolerated before stability is no longer assured. Consider the case of additive

perturbations (see Figure 2.2) where P*(jw) is an mxn nominal plant transfer

PPN

function, and K(jw) 1s the nxm controller.
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Theorem 2.4: Assume :

(1) P*(jw), APA(jw), and K(jw) are rational transfer function matrices

aTe )

(2) APA(jm) is stable.

(3) The nominal closed loop system (APA(jcu)s 0) is stable.

]

Then, the closed loop system described by solid lines in Figure 2 is stable

for all APA(jw) which satisfy

S(T+P*(WK(IW)) > 5(AR, (J0))F(R(Jw) (2.19)
for all weR.
Proof: [15]. O

The utility of this theorem lies in the fact that only knowledge

of the norm of the perturbation matrix is required to ensure stability.

i)

Equation (2.19) can also be interpreted geometrically as.a generali-

]

zation of the Nyquist criterion for SISO systems. The left hand side of k
equation (2.19) is analogous to the distance of the SISC Nyquist locus from j
the critical point -1+j0 in the complex plane [15]. j
A similar theorem holds in the case of multiplicative perturbatioms. ‘;

Consider the system in Figure 2.3. &
Theorem 2.5: Assume: )
(1) P*(Jw), APM(jw), and K(jw) are rational transfer function matrices. j
(2) APM(jm) is stable. g
(3) The nominal closed loop system (APM(jm) £ 0) is stable. '-'1
(4) det{P*(Jw)K(jw)}#O0.
Then the perturbed system is stable for all PM(jm) which satisfy -
ag(l+ [P*(jw)K(jm)]-l) > E(APM(jw)) (2.20) j

for all wE€R.

Proof: [4]. o
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g Here, the robustness is measured with respect to the inverse q
: Nyquist matrix I-l-[P"‘(jm)l((jm)].l rather than the return difference matrix ;
ij as in equation (2.19). fﬂ
hl It is important to be aware that equation (2.20) is valid only y
4 for perturbations that are at the output of the plant, as shown in Figure 2.3. -
ii If the perturbation was applied at the input of the plant (the positions of }3
El P*(jw) and Ii—APM(jm) would be reversed in Figure 2.3) equation (2.20) |
becomes ]
ST+ RGUDP* ) 1™ > 52, (1)) >
>

where the matrix K(jw)P*(jw) is nxn rather than mxm. For the sake of con- 3
sistency, all of the following theorems in this section will deal with §l

output perturbations. Results for input perturbations are similar and can -
be derived from the references given for each theorem. :1

The above theorem shows how multiplicative perturbations impose N
limits on the size of the closed loop bandwidth Wg . (We define the bandwidth B

of a MIMO system as the frequency at which the largest singular value of the
transfer function matrix drops to 1/v/2 of its zero frequency value.) The

relation

[T+ [P*E0)KUw) 171 = P*(Ju)R(Jw) [T+ P*(Ju)R(Ju) 17T (2.21)

plus equation (2.10) implies that the smallest singular value of the inverse

Nyquist matrix is just the reciprocal of the largest singular value of the 4

Ei trangsfer function matrix. At frequencies where large multiplicative per- BN
\-.

& turbations are possible, the above theorem requires that 2]

1

)

PR ]
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F a1+ E* KRG 1™
be large, and hence
E(P*(jw)K(jw)[I4-P*(jw)K(jw)]-1)

be small.
The effect of modeling uncertainties and parameter variaticns on

input-output response in MIMO system can also be measured in terms of

?i singular values. One way to do this that provides a logical generalization
) of the SISO case is to define a nominally equivalent open loop system, and
‘é then deduce conditions that require the output of the closed loop system to
. be less sensitive to perturbations [5]. Consider the system described by

solid lines in Figure 2.4 where

g. K (J0) & K@) (T+P*Ju)RGu) ™ . (2.22)
Comparing this open loop system to the closed loop system of Figure 2.2,

PN
AR
4 2

we see that when APA(jm)-EO the two systems will respond identically for

gg any given input Uc' For the case APA(jw)E(), yo(jw) will denote the output
% of the open loop system, and Ve will denote the output of the closed loop
5 system. When APA(jw)£1), these outputs will be denoted by y;(jw) and y;(jw).
L The open loop and closed loop errors are defined by
e

e (Jw) = y_(Jw) -y (Jw)
0 ° ° ° (2.23)

- - - 1

e (Jw) = y (Ju) -y  (Juw) .
2
. The open loop and closed loop systems can be compared through the
a mean squared errors, which are defined to be
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J = ne (et dt
(2.24)

J =

[
0
{
0

where eo(t) and ec(t) are the inverse Fourier transforms of equation (2.23).

Theorem 2.6: Suppose:

(1) K(jw), P*(jw), and APA(jw) are rational transfer function matrices.

2 APA(jm) and (I-|-P’"(jw)K(jm))_1 are stable.

(3) The perturbed system of Figure 2.2 is stable (i.e. APA(jw) satisfies
equation (2.19)).

If APA(jw) satisfies

o (I+P*(jw)K(jw)) 2 5(aP, (3u))T(K(Jw)) + 1 (2.25)

for all w in some interval .}, and uc(jw) = (0 for all wé¢.), then

I, < 3,- (2.26)

Proof: [8].

When the conditions of this theorem are satisfied, the output of the
closed loop system in Figure 2.2 will be less sensitive to additive pertur-
bations than the output of the equivalent open loop system. Under these
conditions, feedback has a desensitizing effect.

The sensitivity condition (2.25) is remarkably similar to the
stability condition (2.20). Indeed, if a system has good sensitivity pro-
perties under additive perturbations, it must necessarily also have good
stability margins under additive perturbations in the frequency band /.

A similar result holds for multiplicative perturbations. Consider

the multiplicatively perturbed systems in Figures 2.3 and 2.5, with errors

defined as in equation (2.23).
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Theorem 2.7: Suppose
(L APM(Jw), P*(jw), and K(jw) are rational transfer function matrices.
(2) 4P, (Ju) and (I+P*(Jw)K(ju)) ™! are stable.

(3) APM(jw) satisfies equation (2.20).

(4) det{P*(Jw)K(jw)}#0.

1f APM(jm) satisfies
91+ [P*U0RU0 ™ 2 502, (J0)) + FUP* K@) 17D (2.27)
for all w in some interval .?, and uc(jw) =0 for all w¢.’, then

J =<J.
c o

Proof: ([8]. ]

Since G([P*(jw)K(jw)]-l) is a nonnegative numbar, we again see
that good sensitivity properties of a multiélicatively perturbes system imply
good stability margins (see equation (2.20)) for we.l.

Also, the sensitivity conditions (2.25) and (2.27) need only be
satisfied in a finite bandwidth. The robustness conditions (2.19) and
(2.20) must be satisfied for all w.

Another important fact is the the robustness sensitivity theorems
for additive perturbations (Theorems 2.4 and 2.6) are conservative. For
example, there does not necessarily exist a destabilizing APA(jm) which will
satisfy equation (2.19) with equality. However, if additive perturbations are
considered in the configuration indicated by the dotted line in Figures 2.2

and 2.4, the bounds (2.19) and (2.20) are mot conservative.
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2.3. Linear Operators and the Lyapunov Equation

It is easily demonstrated that the collection of all m n complex
valued matrices (men) is a linear vector space. A useful inner product on

this space is

(M) M) = tr{Mﬂl,Mz} , MM, e ¢°, (2.28)

2

h The natural norm associated with this inner product is the Frobenius norm

JHHY = Y tr{bI{Ml}

be n oo 2
& = I I m 2.29
‘ i=1 jall ijl ¢ )
A
(LA

A vector space is complete under a given norm if every Cauchy
sequence of vectors in the space converges to a vector which is also a member
of the space. A complete, normed, linear vector space is a Banach space.

If, in addition, an inner product which induces the norm is defined, the space
is a Hilbert space. Under the inner product defined in equation (2.28).
men is a Hilbert space.

A concept that will be useful later is cartesian product Hilbert
space. A cartesian product of two Hilbert spaces is a collection of all
ordered pairs consisting of one vector from the first space and one vector
from the second. For example,

x
4 Joxn

s ¢ " (2.30)

is a cartesian product space. An element of this space is written

M,N), Mec™®, Nnec™™.
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An inner product is defined on a Cartesian product space by adding
the inner products from each constituent space. For example, the inner

product on S is

((Ml,Nl),(Mz,Nz)) = (MI’MZ) + <N1’N2)

- er(1M,} + er{NiN ). (2.31)
Under this inner product the Cartesian product of two Hilbert spaces is
itself a Hilbert space.
The concepts of operators and adjoints will be useful in the
derivation of the gradient in the following section. Suppose F:X +% is a

linear operator where X and % are inner product spaces. If there exists

another operator ¥ : ‘q—-»d' that satisfies

(y,4(x)) = (& (y),x , VXEX, yEYy. (2.32)

then X* is called the adjoint of 4. When 2% and % are Hilbert spaces,
the adjoint always exists and is unique. The adjoint operator has the
following properties [16]:

(1) The adjoint operator 4 * is linear.

(2) If & has an inverse F 1 then
@ hre @anh (2.33)
It will be of interest to us to examine the Lyapunov equation in

the context of operators and adjoints. First, recall the following funda-

mental properties of the Lyapunov equation.

Theorem 2.10: Consider the Lyapunov equation

KA+ AK+Q=0 (2.34)

v
X
A s s s temam b0
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where
AK,Qe ¢V
and A is stable (i.e. Re{ki(A)}> 0, i=1,...,n). Then
(1) For any Q€ ¢V ™ there exists a unique solution K€ ¢ n,
(2) If Q is Hermitian then K is Hermitian.
(3) If Q is positive semidefinite then K is positive semidefinite.
Proof :
(L 117]
(2) This follows directly from (1).
(3) [17]. m|
Since the Lyapunov equation assigns a unique solution K to every
input Q, it can be thought of as an operator that maps from cnxn to cnxn.

Define the linear operator LA as

L, (®) 2 A% + ax (2.35)

where A is always assumed to be stable. Equation (2.34) is then equivalent to

This linear operator has several very useful properties. First,
it follows from Theorem 2.10 that LA(-) is one to one and onto. Therefore
an inverse Lyapunov operator exists and is linear. It will be denoted LA(-)-l,
where

-1
L, (® = K. (2.37)

Second, since mnxn is a Hilbert space under the inner product defined in

equation (2.28), the adjoint operator of LA(o) exists.
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Theorem 2.12: Consider the linear operator LA on the Hilbert space Cnxn

with the inner product defined in equation (2.28). Then, the adjoint

operator L:(-) is given by

H
LA(')* =L,(9. (2.38)

Proof: From equations (2.28) and (2.32) we have

(YL, (K)) = t:r{YHLA(K)}, Y,ke ¢R,
By the definition of LA’

(Y,L, (K)) = er{yxa+atK) )
= tr{YHKA} + tr{YHAHK}.

Using elementary trace properties,

tr{AHKHY} + tr{KHAY}

tr{KHYAH} + tr{KHAY}

tr{KH(YAH+ AY)}

tr{KHLAH(Y)}

(K,LAE(Y))

which implies LA(’)*"LAH(’) by equation (2.32). O

Another concept which will be useful in the next chapter is the
square root of a matrix. A matrix M is a square root of a symmetric matrix
Q whenever

MM = Q. (2.39)

Under certain conditions, the square root M will always exist, although it is

in general nonunique.
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Theorem 2.13: Suppose that Q is a nxn real, symmetric, positive semi-

definite matrix with rank m. Then there exists a mxn square root.

Proof: Straightforward. 0

Observe that if Q has an mxn square root M, then there will be a &xn square
root for every &>m.

Finally, the following result pertaining to differentiable matrices
is necessary for the derivations in the next chapter.

Theorem 2.14: If V(t) is an nxn matrix whose entries are real valued,

differentiable functions of t, and the inverse V-l(t) exists for all t, then
v i) = v iovv . (2.40)
Proof: The proof is obvious from the fact that
vie)v i(e) =1

and the product rule for differentiation. g

2.4. The Differential

- The concept of the scalar differential can be extended to operators

and vector spaces. Suppose that
J: XYy (2.41)

where X and Y are Hilbert spaces. If there is an operator 84 (x;Ax) that
is linear and continuous with respect to AXx€X, and if &F (x;Ax) satisfies

I3 (x+0x) -oF (x) - 8 (x,0x)!
1axl

lim =0 (2.42)

f Axi-+0

then 8& (x;4x) is the Frechet differential of & at x in the direction Ax.

L.
_— o §
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q Notice that the differential assigns a vector y to every ordered pair
(x,4%),

SH: ZxTe > Y. (2.43)
-
Since 6F(x;4x) is linear in Ax, it can be written (for each x€¥%),
. 8F (x3;0%x) = &' (x)4x (2.44)
-

where &' 1is a bounded linear operator that depends on x,

AN B(Z.y) .

o~

Here, B(.%,q,) denotes the space of all bounded linear operators from % to %.

- ' 1s called the Fréchet derivative of f at x.

B

- Many of the properties of scalar derivatives extend to Fréchet
! derivatives, such as the familiar chain rule.

Theorem 2.16 (Chain Rule): Suppose that & and I are operators

G F:2L+Yy
g SR

(2.45)

I where 4, Y, » are Hilbert spaces. Suppose further that the Fréchet deriva-

tive &' exists for all x€2% and that ' exists for all yeq . Then, the

; operator
A 2+ (2.46)
tﬁ«’.
has a Fréchet derivative given by
= R ' (x) = X' (F (X)) F(x). (2.47)
‘_":
L’ Proof: [16]. o




‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

The chain rule also applies to Fréchet differentials. It follows
from equation (2.47) that the differential of the composite operator in

equation (2.46) is

IR (x34%x) = SHEF(x); §F(x;4%)) (2.48)

where 3 and & are under the same assumptions as in the theorem.

The geometrical interpretation of the Fréchet differential is

similar to that of the scalar differential. Equation (2.42) is equivalent to

L ¢
5

Pl e ot OaSCERR ML el
v e
ot P

v 4
N 2
i

saying that for all € >0, there exists 8(e) > 0 such that if Baxl < 8(e), then

N4 (x+Ax) -F(x) ~6F (x;0%x)) < ehdxl.

Since

LA X R | ‘it
AT T
TIPCEINONENNP |

7 (xtax) = F(x)0 = 16F (k58001 < IoF (x+ax) = F(x) - 6F (x;8%)1

"

4
we can see that for small §Axl, the magnitude of the differential i{s approxi- |

3
mately equal to the magnitude of the change of <% (x) in the Ax direction. ]
The differential, then, can be interpreted as a sensitivity function.

PR 1

In the case of functionals, this concept can be carried further.
First, recall that a functional is an operator that maps a vector space

into the real line,

£:4-R. (2.49) j

Theorem 2.15 (Riesz Fréchet): If g is a bounded linear functional on a 4

Hilbert space X, then there exists a unique vector h in % such that for

all xe%, E

g(x) = (h,x)

v

il

with

Igh = 0hi ]
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2
where ligl is the induced functional norm,

ig1 £ sup (|g@)]}.
Ixi=1
Proof: [16]. O
The true power of this theorem is that it applies in infinite
dimensional spaces. 1In this thesis we will be concerned primarily with finite
dimensional Euclidean vector space. However, the above theorem is.still'
useful because it provides a means of calculating the gradient through the

differential.

Consider the functional £, as in equation (2.49), over a Hilbert
space %. Since the differential 6g(x;Ax) is linear in Ax, the Reisz-Fréchet

!i theorem guarantees that there exists a vector fo such that

SE(x;Ax) = (fo(x),Ax) (2.50)

where fo(xo) denotes the gradient of f with respect to x at the point Xy
Recall that the gradient is a vector that points in the direction of maximum
increase of £ at X and whose magnitude is equal to the value of the
directional derivative in that direction.

Equation (2.50) also provides another geometrical interpretation
of the differential. When lAxj =1, the differential is just the gradient

projected in an arbitrary Ax direction. In this case, the differential is

equal to the directional derivative. This suggests a way to calculate the

: differential.
. Theorem 2.16: If the Fréchet differential of the functional in equation
*i (2.49) exists, then it is unique and is given by
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SE(x30%) = - f(x+etx)| . (2.51)
de
c=0
Proof: [16]. O

These results have a straightforward generalization to Cartesian
product Hilbert space.

Corollary 2.17: Suppose f(x,y) 1s a functional over a Cartesian product

Hilbert space,
f: 2x% >R, (2.52)
If the Fréchet differential of f exists, it is given by

S£((x,y); (8x,8y)) = 8f(x,y;0x) + Sf(x,y;dy) (2.53)

where each of the differentials on the right hand side of the above equation
is computed according to equation (2.51).
Proof: The proof follows from Theorem 2.16. o

Equation (2.50) can also be extended. The Riesz-Fréchet theorem implies

SE((x,y);0x,Ay)) = ((fo,Vyf),(Ax,Ay)) = (fo,Ax) + (Vyf,Ay) (2.54)

where this last equality was from equation (2.31).

An application of Fréchet differentials that will be important in
the development of this thesis is the sensitivity of eigenvalues and singular
values with respect to a parameterization of a matrix. The following two
theorems provide formulas for these sensitivities.

Theorem 2.18: Consider the real nxn matrix A(a) whose elements are Fréchet

differentiable functions of the vector a,

A:R® - RV, ack” (2.55)
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\ If Xi(a) is a distinct eigenvalue of A(a) with right eigenvector vi(u) and
left eigenvector wi(a) then

oy wH(a)&A(a;Aa)V.(a)
Gli(a;Aa) = —

. PN
1.._. e N e

i

" . (2.56) )
w, (@)v, () E
Proof: [18]. 0O
Although A is a matrix, it is not considered here in the usual sense of a

linear operator. Each entry of A is a possibly nonlinear functional of the

vector o, and hence'A(-) 1s a nonlinear function from R® into R,

Note that the hypothesis Ai distinct is imposed in the above
theorem because for nondistinct Ai, the left and right eigenvectors can be
orthogonal, that is, wil(a)vi(oa) = (.

An analogous theorem holds for singular values.

Theorem 2.19: Consider the matrix A(a) as in equation (2.55). If ci(a) is a

distinet nonzero singular value of A(a), then

Gci(a;Aa) = Re{u?(a)GA(a;Aa)vi(a)} (2.57)

where ui(a) and vi(a) are the left and right singular vectors that correspond
to ci(a).

Proof: From equation (2.3)
o2(a) = 1, (4% (@)A(@)). (2.58)

Applying the chain rule (equation (2.48)) and equation (2.46),

LI R R A vy e e
'A._‘J_;’:_[J <e‘:"_4 ) I ; PRI

. s
_.l TR

Wi (2)8 [47(a) A0 Iv, (@)

Zoi(a)sci(a;Aa) - T
. wi(a)vi(a)

(2.59)

o Here, wi(a) and vi(a) are the left and right eigenvectors of the matrix
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AB(a)A(a). Since w?(a)vi(a) is in the denominator, we have

wf(a)vi(a) $ 0= ci(a\ is distinct.

Also, since Ag(a)A(a) is a Hermitian matrix, we know that

(1) w;'i =V, 2.60)
(2) VeV 1.

Hence, H
wi(a)vi(a) =1,

Applying the product rule on the right hand side of equation (2.59)
H H H
S[A (a)A(a)] = SA (a38a)A(a) + A (a)SA(azAa).

Substituting this and equation (2.60) into equation (2.59),
H H H
20i(a)601(a;Aa) = vi(a)[A (a)SA(az0a) + SA (a;Aa)A(a))vi. (2.61)

From equation (2.9),

Zaidci(a;Aa) = ci(a)ug(a)dA(a;Aa)vi(a) + vzaAH(a;Aa)ui(a)ai(a)

where ui(a) is the left singular vector of A(a). Then,
20,80, (a30a) = o (uHGA(a'Aa)v 4-[uH6A(a'Aa)v ]H)
I B it4 ’ i i ’ i

H
ZOiRe{uiGA(a,Aa)vi}.

Dividing each side by Zci(a) yields equation (2.57). a

In the ci

However, it can be shown [19] that there exists u, in the left singular

i

vector subspace and v, in the right singular vector subspace such that

i
equation (2.57) holds.
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3. ADJUSTMENT OF CONTROL SYSTEM PARAMETERS USING
SINGULAR VALUE SENSITIVITIES
The purpose of this section is to develop a method for modifying
control system designs to satisfy singular value inequalities. First, the
translation of desirable closed loop MIMD system properties into requirements
on the singular values of the return difference matrix, the loop transfer ma-
trix, and the inverse Nyquist matrix is discussed. Then, general sensitivity

formulas for these important functionals are derived. A control parameter

adjustment method for manipulating the frequency shapes of these functionals

is proposed. This theory is then applied to the linear quadratic (LQ) problem

to obtain specific results.

3.1. Loop Shaping in the Frequency Domain for MIMD Systems

Consider the MIMD system shown in Figure 3.1, with
u(ju) €¢P

(W), o (J9), d@w), Qe €€

P(jw) is the p input, m output plant, and K(jw,@) is the m input, p
output controller. The vector & represents the control parameters, which

are chosen by the designer. The vectors d and 7] are disturbance and sensor

noise signals, respectively.

The transfer function matrix of this system is given by

y = PK[I + PK]']'(uc - + [1+ PK]'ld (3.1)
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!! where the explicit dependence on w and @ has been suppressed for notational
clarity. Here, we see some of the typical SISO design tradeoffs appearing
immediately in the MIMO case. For example, consider the above equation with

- M= u, = 0. The effect of the disturbance on the output is

y = [+ P .

Taking norms on each side and using equations (2.10) and (2.11) we obtain the

o inequality
& .

Iyls gz el (3.2)
!! For disturbance rejection we must therefore have

g (I +PK) > 1 3.3)

at frequencies where disturbances may be large. This translates into a

-
e condition on the loop gains through the singular value inequality
- la(1 +BK) - o(Bk)| <1. (3.4)
When
g () >>1 3.5)
(,:‘.

condition (3.3) is implied. This requirement of large loop gains and large

return difference matrix for disturbance rejection is analagous to the scalar

li case.
A system has good command following properties if the error between
r
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the input and the output is small when no sensor noise or disturbance 1is %

present. From equation (3.1), we see that good command following requires
-1
PK[I + PK] "= I (3.6) 1

in the frequency range where the command signal has significant energy. If

e(jw) is defined
e(jw) = y(Qw) -u, (Jw) 3.7

then the relation

e = [I+ PK]-luc (3.8)
is obtained by substituting equation (3.1) into (3.7) with Tl = d = 0, As f
before, condition (3.3) implies that | e|l will be attenuated and that equa-
tion (3.6) will be satisfied. ’-;j
The first limitation on making the loop gains arbitrarily large is ?
imposed by the sensor noise T|, From equation (3.1), the noise to output :
transfer function matrix is just the negative of the command to output ma- ﬂ
trix. Thus, conditions (3.5) and (3.3) and equation (3.6) imply that the
-4
" sensor noise will be passed directly to the output. From equation (3.1), 3
- - ‘.
- g (PK) '
L . h3
. \1
o and so it is desirable to have R
4 T(PK) < 1 (3.10) 3
= A
h} at frequencies where the command signal is dominated by the sensor noise, -
-
- .
5 R
| S O T
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!l There are other more severe restrictions on the loop gains imposed by robust-

ness and sensitivity considerations.

AIPRIAIA U TS IS

if‘ A closed loop system is said to be robust when it remains stable under f

plant perturbations. These perturbations represent the difference between

l"

|

the true plant, P(jw), and the mathematical model,P*(jw). As discussed 1in

Section 2, this difference can be modeled by additive or multiplicative per-

turbations. In the case of additive perturbations that surround the plant

; o ".'-"
L

and controller, the sufficient condition for closed loop stability (see Thm.

WA S STy

e

2.4) is

..

g (1 +PwK(ju,0)) > L (e Yo (3.11)

where %A(jw) is the uncertainty magnitude bound.l For good robustness pro-

L%

perties, the left hand side of the above equation should be made as large as

possible through choice of the parameter vector «.

JJ When the difference between P(jw) and P*(jw) is modeled by a multipli- ﬁ
b“
fl cative perturbation, the sufficient condition for stability (see Thm. 2.5) is %
(’1? * -1 (3.12 3
> a(I + (P (JWK(Jw,®) " > 4 (ju) ¥ w -12) a
¢ e
- :_q
Vo 1f ZM(jw) >> 1, then by equation (3.4) -
_‘j
f} 1The uncertainty magnitude bound 4A(jw) is a positive real valued function of N
: w. It defines a class of perturbations ARA where each member of the class
- is a mxm transfer function matrix that is stable, rational, and has HAPAH <
. %A(jw).

l-» e
maaaata R _iaa fasta.
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: -1 -
o(t + [P UuRGE®] ™ = g((P* Gukde,o]™h
- -1 (3.13)
= [o(P" (JW)K(jw,2))]
and this reduces to condition (3.10).

Similar conditions arise from sensitivity analysis. It has been shown

[5] that

e (o) = [I+PUwKUGe,®] e (ju) (3.14)

where eé(jw) and eo(jw) are defined in eqn. (2.23). This again implies that
the return difference matrix (eqn. 3.3) should be large in the frequency range
of interest. Notice that the true plant P(jw) appears in the above equation.
This equation can be expressed in terms of the nominal model and the perturba-
tion magnitude bound, as shown in Theorems 2.6 and 2.7. Here, we get the

conditions that

o(1 + P (JWK(u,®) > 1 + £, (jw) (3.15)
for additive perturbations, and
o(T + [P*R]7™H) > () + FUP*QwIKGu,0 1™ (3.16)

for multiplicative perturbations.

In designing a control system, and in choosing &, it is necessary to
know where in the frequency spectrum the uncertainty bounds are large. 1In
general, the multiplicative uncertainty bound LM(jw) increases as frequency
increases. This places a limit on the loop bandwith, The crossover fre-
quency, defined as

w i (P (Ju)K(Ju,®) = 1 (3.17)
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must occur approximately where Lu(jw) becomes greater than one. Otherwise,
Theorem 2.5 will be violated. Typically additive perturbations dominate at
lower frequencies, and so eqn. (3.11) should be satisfied for w < W, These
requirements, in terms of loop gains, are shown in Figure 3.2. This is the
MIMO generalization of classical SISO loop requirements.

The task of the designer, then, is to manipulate the singular value
functionals in equations (3.11) and (3.12) through choice of the parameter
vector &@. In this thesis, a method of choosing @ to increase (or decrease)

these quantities in a gradient optimal sense is proposed.

3.2, General Sensitivity Formulas

The design of any controller usually requires several iterations.
.An initial parameter vector ao ls selected (see Figure 3.l1) and then the
closed loop system is valuated to see if it meets the design objectives and
constraints. If not, a new vector al must be determined on the basis of the
evaluation,

As previously discussed, the design objectives translate intoupper and
lower bounds in specified frequency ranges on the functionals defined below.

In these equations, the frequency variable has been suppresed for notational

brevity.
g (I +PR(x,)) & g, @) (3.18)
g (I +K@)P") 4 g, (%) (3.19)

19

(I + [p*x(ao)]‘l) 4 ¢ ,0(010) (3.20)
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¢ (1 +REIFIH L g @) (3.21)

The next design vector oy must then increase (or decrease) the value of

gx’Y(ao) in that frequency range. Here, EX,Y(

functionals. (This discussion applies as well to any singular value oy Y(ozo)
3

@,) refers to any of the above

of interest.)

The gradient vector Vo
=X,Y

(¢) in an optimal sense. Since the gradient vector points in the direc-

(ao) can be used to increase (or decrease)

%,

tion of maximum increase, there exists an ¢; such that {if Yoy Y(Olo) # O then
»

\/o (@,)
=X,y © u
T * ¢ g el ) 2%,y * ¢ TP (3.22)

for every vector u € R". The vector o is then defined

al 4 a + eVgx’Y(cvo). (3.23)

Since al must be a vector of constants, a fixed value of w must be chosen for

the calculation of the gradient. The vector &, is then guaranteed only to

1

increase the value of gy Y(ao) in some neighborhood of w = To increase
?

1
gx Y(<:|r°) in a specified frequency range, several design iterations may be
’

necessary. In this case, a design iteration consists of the following pro-
cedure,

(1) calculate vg Y(ak) at a constant w = o
]

X k

(2) Form Xl "%t ‘Vgx,y(ak)

(3) Evaluate Ty v (ak+1) as a function of frequency for different

values of ¢. Select ¢ = €

NP U T . WA SEE ST S W ) N - N n o
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(4) 1f (ak+1) does not meet the overall frequency criterion,

Zx,Y
return to step (l).

In each iteration, it may be necessary to calculate the gradient at

a different frequency than the previous iteration. Also, it may be neces-

sary to calculate gradients with respect to different functionals (X =M,A,

Y=1,0).

The gradient vector can be obtained by considering
o:R" -rtcr (3.24)

where w is held constant. With the selection of the appropriate inner pro-
duct, g(@) defines a map between n dimensional Hilbert space and the positive
real line. When EX,Y(Q) is distinct, the Frechet differential can be com-~
puted. By the Riesz-Fréchet theorem, the differential can be expressed as
an inner product. If the arbitrary vector 4« can be isolated in the inner

product, the other term must be the gradient.
80y y(®ba) = ( Vg y(®), & ) (3.25)

This method will be used to calculate the gradient of the four singular value
functionals in equations (3.18) - (3.21).

Applying the singular value differential formula (2.57) to equation
(3.18),

53, ,(@:80) = Re { ! sk (o;0a) P*v ] . (3.26)

u and v are the left and right singular vectors of the matrix I + P*K(a)
that correspond to the smallest singular value. In the following equations,

the symbols u and v will be used generically to denote left and right sin-

o e a e

GRiK

1. ol Lo

A
2
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gular vectors corresponding to the appropriate matrix. Next, equation (3.19)

yields

L)

bo,  (380) = Re { u 6R(a ;00)P*v ] . (3.27)

Similar formulas are available in the case of multiplicative perturba-
’

tions. First, to avoid long equations define the loop transfer matrices

T(@ 4 P'R(@), T (@) & K(@)P, (3.28)
Then applying equation (2.57) to (3.20),
5‘-’M,o(°’;“) = Re {unéa{[P*K]-l}v} (3.29)

where 6a(’) denotes the differential with respect to o in the direction Ac,

Employing equation (2.40),

) H -1 * . -1
89y o (@380 Re {u T P 8KR(%;0)T v}. (3.30)
Similarly,
H. -1 * -1
80, [(@;40) = -Re {u T; 8K(¥;80)P°T v} (3.31)

To isolatg the Ax term in the above equations, the structure of the
controller, the choice of inner product, and the particular space to which
@ belongs must be determined. This will depend on the particular problem

under consideration.

3.3, The Linear Quadratic Problem

The linear quadratic (LQ) control problem expresses the control

objectives in terms of a performance index. The objective of the problem
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is to choose a control u to minimize

3 = [ (x%ox + u"Rulde (3.32)
0

where x is the state vector defined by the system

X = AX + Bu. (3.33)

Here,

x €ERY, u €R™.

It will be assumed that:

h Q=20 (3.34)
(2) R>0

(3) (A,B) is stabilizable

(4) (J/Q,A) is detectable

(5) All states are measurable

Then, a linear stabilizing state feedback solution exists and is given by

u = -Gx (3.35)

where

-1
G = R BTK

and K is the unique positive semidefinite stabilizing solution of the alge-

braic riccati equation (ARE),

1T

Tg +q - ker" 8%k = 0. (3.36)

KA +A

2" ake A

IRy L ee .
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To make this feedback system realistically feasible, a command input

is usually added to the control u. Equation (3.35) then becomes
u = =Gx +u
c

The system of equation (3.33) with the control given above can be
expressed in the frequency domain by transfer function matrices. The nominal

plant transfer function matrix is given by

P*(jw) = @(jw)B (3.37)
where

e(jw) & (JuI - A)"%,

The loop transfer matrix, calculated by opening the loop at the input of the

plant is

T (Q,R) = GyB (3.38)

with

Tﬁqm)ecmxm.

The dependence of T. on the Q and R matrices is considered explicitly here.

1

Also, the dependence on w is suppressed for notational brevity. The output

loop transfer matrix is

T,(Q,R) = 9BG (3.39)

where

To(QR) € at*n,

The closed loop transfer matrix is given by the following input-output

R

2

RN ERC-T WY XN

PN WGPV PE TR - VT eR e

3 VL P

WD SO W 7 . P S L

NN SPES PO POUIPIN TP TP

— )
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equation,

y = 9B[I + chBl'luc- (3.40)
The controller is simply the constant gain matrix G.

K(jw,a) = G(Q,R). (3.41)

Here, the control parameter « represents the (Q,R) matrix pair, since these
matrices are the choice of the designer. The LQ system is shown in Figure 3.3.

Although G(Q,R) appears in the feedback loop instead of the feedfoward
loop, the preceding concepts and theorems are still valid. It is still desir-
able to make

a(l + TI(Q,R)) (3.42)
as large as possible below crossover, and
a1 + T, QB (3.43)

as large as possible above crossover.

It turns out theoretically that the full state feedback LQ loop has
very good performance and additive robustness properties. Starting with the
ARE, it is possible to derive the following relation [20] provided tiat the

open loop system has no poles that lie on the jw axis.
c I1+T : . .
g ((OR) 2 ﬁmn(n) Y w ; ¥ admissible (Q,R) (3.44)

The R subscript means that the singular value has been weighted by R.

g, A) & A/xmm(p."'rus.). (3.45)

Lo
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In classical terms, this translates into +® ,-6dB gain margin, and + 60°
phase margin independantly in each input channel when R is a diagonal
matrix [4].

Although these are impressive theoretical guarantees, in practice
there are problems. The fact that every LQ loop has a 20dB/decode rolloff,
contradicts the physical reality that almost every real system has a trans-
fer function with two or more poles than zeros [2]. Inevitably, there will
be unmodeled dynamics in the nominal LQ system. Hence, the designer may
find it desirable to manipulate equations (3.42) and (3.43) to obtain even

better properties than equation (3.44)., For example, > 10dB may be

g A,I =
a necessary requirement in a certain frequency range. The iterative design
method of section 3.2 provides a way to tune up the Q and R matrices to
achieve the desired frequency shapes of the system singular values,

An immediate obstacle in applying this design technique to the LQ
problem arises because (Qi’Ri) must satisfy the positive definitions re-
quirements (3.34).

In equation (3.23), the parameter vector &, represents

i
(Qi’Ri) . For example,

Q = Q +e%, L QR

The matrix Ql will not necessarily be positive semi definite. This problem

can be circumvented by calculating the gradient with respect to the square
roots .~ (Qo’Ro)’ where
M:MO -Qo Mo € /P %1
(3.46)
STy N, € AR,

(Y

-
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Then, the (QI’RI) pair is formed

Q = 01 +e90 )T(M°+e

e i, (3.47)

1 mZi,5)0

T
Ry = (N, + €Wy ) Mg + &% 3y 4

Note that only positive semidefiniteness is guaranteed, and gl will have to
be separately tested for positive definiteness.

Before using the sensitivity formulas (3.26) - (3.31) to calculate
the gradient vector, a Hilbert space and inper product must be defined. Here,

the parameter vector « represents the (M,N) matrix pair. The singular value

functional Sx Y(M,N) is defined over the cross product Hilbert space RP X0y
bl

mxm
»

R

gy ¢t BNk RPFR /T R, (3.48)

The inner product is defined as

(M), 04N & er (MM b+ e (NN, ). (3.49)

This inner product is the matrix analog of the Euclidean inner product on Rn.

We are now ready to derive the gradient of the functionals ¢ X Y(ao)

for the LQ controller. First, consider the case of additive perturbations:

Theorem 3.1 (Input Perturbations)

a) The gradient of EA I(M,N) with respect to M is

v, g = -MP

MZa,1 (3.50)

1,1

where P is the solution of the Lyapunov Equation

1,1

aade

A A..;'AL‘ ‘A' ‘:AL. PRy
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P, AL 4Ap, _ -Re{Z, . +ZF }=0 (3.51)
l’I l,I l,I l,I ¢
and where:
g, " chquR']'BT (3.52)
H
A= A-BG (3.53)

v,u = right and left (respectively) singular vectors of I +

'1‘I (M,N) corresponding to the smallest singular value.
b) The gradient of %A I(M,N) with respect to N is
b}

T

VNEA,I = -NPZ,I - NGPI,IG (3.54)
where: i

P, . = Re(Z, _ + % _} (3.55)

2,1 2,1 2,1 *

£, =T wvip} (3.56) t

2,1 I : : T

To simplify the notation, the explicit dependence of the Fréchet dif- )

ferentials on the variables M,N,AM, and AN will be dropped unless needed for
c'larity. :
Proof: From equation (3.27), we have

Re{uﬂé GyBv}. (3.57)

SNy 2,1 M,N)

The differential of G over the cross product space is equal to the sum of
the differentials over the individual spaces;
GMG + GNG.

6(M,N)G (3.58)

.
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First, o

! 56 = R BTs (3.59) ]
M e :

: *
i where K depends on M through the Reccati equation (3.36). Employing equation 1
-

c! (2.51) to differentiate the Reccati equation with respect to M yields :
T 3 T 3

- SyKA + ATERy + SO + cAM) (M + eti) | g |
b ;
-1.T -1 T 4

$i - GMKBR B'K - KBR B § K = 0. ¢
s M A
v -3
. Combining terms, ?
JL T T T .
GMK(A - BG) + (A - BG) §yK + M AM + AM'M = 0, (3.60) R
nﬁ This can be expressed in terms of the Lyapunov operator defined in equation :q
(2.35) and the closed loop A matrix defined in (3.53) *
~d
4
T =

L (80 = 0o+ aM). (3.61) :
’f_’:
Since this operator is invertable (see equation 2.37) the above equation can -

-
be solved for 6MK %
-1
5K = -LZ"‘mTAM + OMM). (3.62) .
™
.:"
Substituting this into (3.59) &

86 = 50 K-I(MTAM + MOy, (3.63) |

The differential GNG can also be found,

-1.T -1..T
8,6 = R "B &K + 6 (R IBK. (3.64) -

- - P N S T P L. . R L e - . St L e Y
P UL VD NI, TR SR e SRR PSRy YNy wouy M| [N PP A SR TR S - U WP 1P P PISY VI WP U S P " PSP Y WS B3 PSS ShEY WONE S e
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Using equation (2.40),
-1 -1 -1
6N(R ) -R 5NRR
- a—-R-l(N + )TN + eAN)R'll
’ o€ =0
b -, c
b :
L - - (3.65)
- = <R 1(NTAN + ANTN)R L :
]
m The differential GNK can be found by differentiating the Rizcati equation q
?2: with respect to N, i
T -1T -1, T -1 T
61<NA+A 6yK - 8yKBR "B'K - KBBN(R )B'K - KBR "B §K = 0.
Substituting (3.65) into the above and combining terms gives
8 KA + KK + G (NN + ANN)G = O.
In terms of LK we have
i
Lp(8gK) = -GT (VAN + &N'N)G _
sk = Ly Ty + aNN)G). (3.66) ,
J
Substituting (3.66) and (3,65) into (3.64) yields .
|
8,6 = -R-IBTLK-]'(GT(NTAN + ONTN)G) ;1
(3.67) i

R tTan + anTvye.

Substituting equations (3.67) and (3.63) into (3.58),
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'1
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i LT -1.T T -LT Lo R
[‘ SuyS = "R Blg (MaM+aMM) - R BLg (G (N&N —-1
~ (3.68) ;

+ a6y - R-IevTan + antye. .
Then, from equation (3.57),

H,-1T -1_T T -LT, -1
bouwy Za,1 = - ReleRTIBTL S ol + el + RTTL g (6T

+ aNTN)G) + R']'(NTAN + ONTN)G]qBv]. (3.69)

,T Since the trace of a scalar is a scalar, we can take the trace of the
right hand side of the above equation and the equality still holds. This
allows us to manipulate the matrix terms and get the right hand side in terms

of the inner products defined on the underlying spaces. Then,

H -1 T T
6(M,N)EA,I -Re{tr{u™R "(N'aN + &N N)TIV}

+ cr{u“R'LBTLA.' LT ovTan + anTnyG)gBv)

(3.70)
- - r
! + t:r{uHR IBTLK]'(MTAM + AMTM):va} }. "#
b o
ﬁ The first term of the above can be rearranged as follows, iﬁ
o
B

B First term = Re{tr{ufR™*(v7AN + ANTN)TI(M,N)V} }
(3.71)
- Re{tr{u“g'luTANTI(M,N)v} + tr{uHR']'ANTN'rI(M.N)v}]-

AR
e o v . . . s
r " e 3 . <'.‘ ’ N .'....
als'2'a ‘J‘ et ieets

g Using the communitive multiplication properties of the trace and definition

(3.56), we get

g First term = Re{tr{ANTN(zg,I + pll

. PR B Pl
S, .
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- . T T ~

] er{eNNRe (I, | + I, ;1] ]

pe -

% .

Fooe = cr{an'Ne, .} (3.72)

o ’

B

! where P2 1 is defined in (3.55). iz

t The second term of (3.70) can be manipulated in a similar fashion.

L We have ]

- Second term = Re[tr{uHR-lBTLA.- LT ovTan + anTwyc)ygev) 3 .
(3.73) §

- Re{:r{LI.I(G(NTAN + ANTN)G)chquR-lBT} }.

The AN matrices can be exposed by moving the Lyapunov operator LK on to the

following terms through the adjoint operator LKT (see equation (2.38)). The

above equation is then
T, T T -1 -LT
Second term = Re{tr{G (N 4N + &N N)GL £ T (chquR LB )} 1.

Breaking this up,

A".l:" |" 1.

T -1

Second term = Re{tr[GTN ANGL T (Z,; I)} DY
, :
(3.74) N
+ er{cTanTNeL T 1(): )} } i
i L1’’’ :
where 21 I is defined in (3.52). Using elementary trace properties, ’]
-1 T.T T, -1 .
Re{t:r[GLK'r (Z; )G N AN} +er{8N NGL -1 (21,1)"}} J

T -1 T T
Re{tr{aN NGIIT (ZI,I + 21,1)‘; }1l 3
= tr{ANTNGL 'r.]'(Re[E +3, _hHety ) (3.75) o
i 1,1~ “1,1 ) i

.........................................
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-1
where the linear character of I.KT has been exploited. According to defini-

tion (3.51), this can be written as
- tr{ANTNGPl,IGT}}. (3.76)
The last term of (3.70) can be manipulated similarly,
Third term = {tr{uH‘R-IBTLK-l(MTAM + AMTM)chv}}
H -1 T}}

= Re{tr{LK- l(MTAM + AMTM)chVu R B

-1
- Re{tr{(MTAM + AMTM) LKT (21,1)}. (3.77)

Further juggling as in equations (3.74) - (3.75) yields

T, . -1 T
Third term = tr{aM ML.T (Re{zl,l * 1‘"1,1})}

= tr{AMTMP (3.78)

l,I}'

Substituting equations (3.72), (3.76) and (3.78) into (3.70), we have

. - T . T T, _ T .
= 8,8y Za tr{aN NPZ’I} tr{aN NGP, |G } - er{am MP]_’I}. 1
. 4
. In terms of the respective inner products, R
- B = T - -

% °(M,N)9-A (AN,NGPI’IG ) (AN,NPZ’I) (AM,MPI’I) .
- R
= (AN,-NGP, ,G' - NB, _) + (aM,-MP, ) 3

‘.: LI 2,1 it 1 ;
. The right hand entries of these inner products are the gradient matrices. O ¥
o :
]
s "11
0. -‘i
8

" . vt e -"
b R R

LS Y1

W ARSIy W VO B

PP+« WY NP ORIt
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Theorem 3.2 (Qutput Perturbations) :

a) The gradient of A o(M,N) with respect to M is
?

2_ass.

24,0

(3.79)

(M,N) = -MPI’O -

where P1 0 is the solution of the Lyapunov equation

T A =
pl,ox + AP - Re{ﬁl,o +2. }1=0 (3.80)

1,0 1,0

LA ,in' FOATORUCLC
MDA L A
Lafatal | LX)

and where: z = quchR-lBT (3.8)

1,0

u, v are the left and right singular vectors corresponding to the smallest

singular value of the matrix 1 + To.

b) The gradient of A 0(M,N) with respect to N 1is
H

|
3

T

VN EA’O(M,N) = - NPZ,O - NGP].,OG (3.82)
T
where: PZ,O Re{zz’o + }..'2’0} (3.83)
H -1
22’0 = Gvu ¢BR . (3.84)

Proof: From equation (3.26), the differential is

= Re{ufoBs

$m,w) 24,0 am

The differential of G was previously calculated in equation (3.68). Substi-

tuting this into the above, and taking the trace,

H -1...T T
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Ty £ LiaTonTan + anTmyc)

. +R-

+RrL

'L HuTam + aMIvll (3.85)
Arranging the first term as in equation (3.71),
Pirst term = Re{tt{uH¢BR-1(NIAN + ANTN)GV}}
- Re{tr{uH:pBR-H\ITANGv} + tr{uuchR-lANINGv}}.
Using the communitive and transpose properties of the trace and definitions

(3.83) and (3.84), ,

First term = Re{tr{cvulger InTan} + er{anTNovuleer™1})

1

T T
Re{tr{EZ’ON AN} + tr{aN NZZ,O

= tr{oNTNP. ] (3.86)

2’0

R P ER T DV IR

The second term of (3.85) becomes

Second term = Re{cr{uuq:BR'lBTL il (T (NTaN + ANN)GIv]})

£ = Re{tr(L 7‘;1 (cTvTan + aNTN)GIvuPeer 18T })

=

' = refer{L 7 (Tav'ay + avTinel; 1. (3.87)
- Employing the adjoint operator and proceeding as in equation (3.74) through

equation (3.77),

Second term = tr{ANTNGP GT}. (3.88)

1’0
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The third term in equation (3.85) can be manipulated in a similar way,

1

Third term = Re [tr{unchR- BTL il {MTAM + AMTM}V}

= Re{tr{L il {MTAM + AMtM}quq:BR-lBT}}
= Re{er(it(wan + au™} £, 1. (3.89)
And proceeding as in equations (3.77) - (3.78),
T
Third term = tr{aM Mp, o}. (3.90)

Substituting equations (3.90), (3.88) and (3.86) back into (3.85),

T T T
e 24,0 -tr{AMIMPl’O} - er{en'N, o} - ex{an’ver, (67}
T
(AM,-MP1,0> + (AN,-NPZ’O-NGPI’OG >,
This completes the proof. o

The case of multiplicative perturbations yields similar results.
Theorem 3.3 (Input Perturbation)
Suppose that the matrix B (in equation 3.33) has full column rank, and

that the pair (A,M) is observable.

a) The gradient of u I(M’N) with respect to M is
’

"MIyM,1 " Mr3’1 (3.91)
where P3 I is the solution of
P, AL + AP, . - Re{Z, . +E% _} =0 (3.92)
3,1 =-7"3,1 3,1 3,1 .
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:
and where j
F -1 H -1 -1T
. 23’1 4 9BT "vu'T 'R B . (3.93)
> u and v are the left and right singular vectors of 1 + 'I;]'(M,N) correspond-

- ing to the smallest singular value.
b) The gradient of EM I(M,N) with respect to N is

i
I T

TSy, = NB, 1 + NGBy 1C . (3.94)
::;i' where
. P, ;& Re(Z,  + zZ’I} (3.95)
. and, T, 4 qu’r;]'R-l. (3.96)

.. Proof: From equation (3.31)

= -Re{uﬂr'ls chBT; 1v}. (3.97)

S, I, 1 I °(M,N)

o
The assumption that B has full rank and that (A,M) is observable is needed 3
‘ i

s to guarantee the existance of the inverse of T_ = GyB.

I

The differential 6(M N)G was previously computed in equation (3.68).

Substituting this in, ;

Ho-1,-1T-1 T T
oy In,1 Re{u'T [R L g {MaM + aM ™M}

o + R 1BTL;1 (cTv'en + anTnyc)

W |

+ R-l(NTAN + ANTN)G]q:BT;lv}.

a Taking the trace and rearranging,

i P T Y T e S T T T S S T T e A S A T T S P S P P P U T SHLIP NI S S HUP U JOVURIC SN SIPC .
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-1 -1_T T -1
G(M,N)EM,I Re{t:r{u“*rI R (N'ON + &N N)GYBT, v}

+ tr{uH'r;lR- IBTLA.-]'{GT(NTAN + ANTN)G}chT;]'v}

+ cr{uHTEIR'LBTI;{MTAM + AMTM}chT;]'v}}. (3.98)
The first term of the above can be manipulated as in equations (3.71)~

(3.72) to yleld

-1 -1 T

Re{tr{uHrI RIonTan + anTNyvll = tr{ANTP4’I}. (3.99)

Following equations (3.74)-(3.76), the second term of (3.98) becomes

Re{tr{uHT-lR-IBTI%]'{G(NTAN + aNTN)GlgBT  tv )]

t" I I

.-

N = cr{av'Nep, LG ). (3.100)
s

Following equations (3.77)-(3.78) the last term of (3.98) is written

- Re{tr{uﬂ‘r; lg- IBTL;:I (MToM + AMTM}anBT; L

- tr{AMTMP (3.101)

3,1}'

Substituting equations (3.99)-(3.101) into equation (3.98) yields

T T
tr{aM MP3,I} + tr{aN (NP, | + NGP3’IG)}

Sou,ny I, 1 1

T>.

= (AM,MP., _) + (4N,N + NGP
3,1

Pa,1 3,1¢
This completes the proof. o

Theorem 3.4 (Qutput Perturbations)

Suppose that the pair (A,M) is observable, and that the matrix B has

PSR AR AP A - R P N A - I AR
PR WU NN W W Ry VRS Wy WPy G Ry VR ey S VR Gy Y WA N Yy il P N W VY VY S i e L S T L T R

SRR U U

Alema

J

N T

e
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rank n.2

a) The gradient of EM 0 (M,N) with respect to M is
s

ngM,o a MP3,0 (3.102)
where P3 o is the solution of the Lyapunov equation
?
P, AL + &P, -Re{f,  +Z }=0 (3.103)
3,0 3,0 3,0 3,0 :
and where:
) -1 H-1__-1T
.1
£30 & T, VuT ¢BR B (3.104)

u, v are the left and right singular vectors of the matrix I + 'Igl(M,N) corre-

sponding to the smallest singular value.

b) The gradient of EM 0(M,N) with respect to N is
E)

T

"Cy,0 = NP o + NGBy G (3.105)
where T

b

240 A Re{24,0 + 24’0} (3.106)
and

-1 H. -1 __-1

24’0 A GT0 vu TO ¢BR . (3.107)

Proof: From equation (3.30),
-1 -1
S,y Zu,0 Re{“HTo 9BS 3 )6 V1 (3.108)

Notice that B and G are of rank n, thus the inverse of To = ¢BG exists, Sub-

stituting equation (3.68) into the above and taking the trace,

2This assumption is unrealistic. See Chapter 5 for further remarks.
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4

N Ho-1_.-1_T T i
m 8,y S0 Re{tr{u T, @BIR (N AN + &N'N)G |
> + R T o + avTye) '
u + R ol + D1 vl (3.109)

0 1
:
:?; The first term of the above can be rearranged as in equations (3.71)- 1
o (3.72)
u Re{er{u’r Lear L onTan + av'wyer; L1 - erf{antye, ol (3.110) .

The second term of equation (3.109) can be rearranged as in equations

E (3.74)-(3.76) J
- __

Re{tr{uHTO' l(pBR-lBTLil {GT(NTAN + ANTN)G]HTO'lv}}

P e N

F - tr{ANTNGP3 OGT}. -(3.111)

Following equations (3.77)-(3.78) the last term of (3.109) becomes

Re{tr{uH'I(').lchR-lBTL;'{MTAM + AMTM}H'I(‘).]'V} = tr[AMTMP3 0}. (3.112) 1

Substituting equations (3.110)-(3.112) into equation (3.109) gives

us the final form,

- (AM,MP3’O) + {(AN,NP

4,0 + NGP

T
§ e}
1,8 Zu,0 3,08

which proves the theorem. a %
In many LQ designs an observer must be used to get full state feed-

back. It has been shown that the inclusion of an observer (or any dynamic

element) in the LQ loop negates the robustness guarantees implied by equa- i

tion (3.44),[21]. Hence the need to manipulate the system singular values
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! to obtain increased robustness and sensitivity margins is critical in the ]
‘ k
output feedback case. Z:
:.} The calculation of the gradient vector is complicated slightly by the :j
- inclusion of an observer in the loop. The observer transfer function matrix
o also depends on the feedback gain matrix G, and hence on the (M,N) matrixpair.
The product rule for differentiation must then be used in equations (3.26) -
(3.31). Following this line of reasoning, it is a straightfoward exercise
to extend the above theorems to the output feedback problem. ’
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4. APPLICATION

WO |

In this section the gradient design method will be applied to a jé
4th order nominal linear quadratic regulator to improve the low frequency .
properties. An alternative asymptotic design method which has been success- :
fully used [22] will also be applied. The two designs will be compared, and g
certain important advantages of the gradient design will be discussed. The R
nominal plant consists of the standard linear time invariant differential f
L
equations in state variable form
) r
% = Ax + Bu, xe R, uer™. (4.1) y
-
The feedback control which minimizes the cost functional j
[~ -] T T oo
J={ xQx+ uRudt (4.2) #
~
0
is given by ;
u = -Gx (4.3)
.
- where 3
- ¢ = R IBTK.
aN -
- . 3
gi K is the solution of the A.R.E., -
B T -1.T 5
& KA+ AK+Q-KBR BK =0 (4.4) ,
b~
p.”
}? where it is assumed that (A,B) is stabilizable and (/a,A) is detectable. "
-3 -
e Q and R satisfy the usual positive definiteness requirements, and otherwise
:; are arbitrary. ?3
;f To illustrate the design procedure, values for A, B, Q, and R were R
H g
= selected as shown below J
oy 3
-
%! e
- .
- )
e
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[0 1 v 0] (1 0]
o 0o 1 0 0 1
A= B = (4.5)
o o o 1 1 0
| -50 =87 45 -9 0 1)
Qo - Ia RO = IZ. (4.6)

The subscript o above indicates initial values for the weighting matrices.

The nominal plant is stable with eigenvalues at

A, = =2 (4.7)

A = -3+ j4.
The closed loop system has eigenvalues at

A, , = -8.01+38.24
1,2 (4.8)
3.4 = -1.16+3.408

A
with
2.89 4.13 2.13 -0.16l
Go - . (4-9)
2.38 4,45 1.59 -0.128
As discussed in Section 3.1, the singular values of the return
difference matrix, the loop matrix, and the inverse Nyquist matrix provide
a measure of the various closed loop system properties (robustness, sensi-

tivity, disturbance rejection, etc.). These quantities are plotted in

Figures 4.1, 4.2, and 4.3 respectively, for this nominal system. For con-

venience, the notation
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A
o(1+6wB) o, (4.10)
A
a(waB) cL,I,i (4.11)
s(I+[cvB]™H &6 (4.12)
i M,I,i *

will be used. The i subscript refers to the independent variables (Qi’Ri)'
In this thesis, the bandwidth (wB) of a MIMO system will be defined
to be the frequency at which the largest singular value of the transfer

function matrix drops to 1/V/2 of its zero frequency value. Recalling that

- -1..~1
3([1+GwBl ™G, B) = [a(1+[C,vB]™D)] (4.13)
the closed loop bandwidth cant found from the plot of OM.I.1i° From
Figure 4.3, the closed loop bandwidth is w_, = 21 rad/sec. Notice that here

B

we are considering the input-output response between uc and y, as shown in
Figure 4.4.

The crossover frequency (wc) is defined to be the frequency at
which the largest singular value of the loop transfer matrix has magnitude
one. From Figure 4.2 v, % 11 rad/sec.

In most LQ designs, the (Q,R) matrices are fine tuned by an itera-
tive trial and error method. This is because there are usually several
different design objectives and many constraints. Since there is no direct
relationship between (Q,R) and these objectives and constraints, a series of
(Qi’Ri) matrices must be chosen, and the closed loop system tested at each
iteration. The information obtained at the ith analysis is used to make the
next adjustment on (Qi’Ri)' In the simple example presented here, only one

iteration is necessary to expose the characteristics of the design method

developed in Section 3.
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For purposes of illustration, the design objective in this example

will be simply to increase the value of o
=-AL,IL,0

will reduce the effect of random disturbances in this frequency range. It

at frequencies w< .l. This

will also make the system more robust and less sensitive to additive modeling
errors (in the same frequency range) as shown in Figure 4.4. Notice that the
perturbation surrounds the plant and controller. In terms of Theorem 2.4, the

nominal plant includes the controller,
P*(jw) = G ¥B. (4.14)

In this case, the value of g is a nonconserva:ive bound for robustness.

A,I

In other words, there exists a perturbation as shown in Figure 4.4 with

BABAN = 94,1,0

that destabilizes the systém.

For design constraints, we will assume that the nominal bandwidth
and input-output properties are acceptable, and should not be altered
drastically. In particular, the closed loop bandwidth should not increase
much, because 1f it does the system becomes more susceptible to high
frequency multiplicative perturbations.

One way to affect the singular values is to assume the (Qo’Ro)
matrix pailr reflects the appropriate priorities. Then, the feedback is
determined by trading off between control energy and speed of response.

This {8 accomplished by introducing a positive scaling parameter in the cost,

J) = [ xTQ x + puTR u dt. (4.15)
0 o o

e,

eddl

od

’
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This method has been used for eigenvalue adjustments [10]. For
large values of p, J(p) approximates the minimim energy cost functional.
In this case the stable open loop eigenvalues remain almost unchanged in
the closed loop system. The unstable ones are reflected symmetrically about
the jw axis. As p tends to zero, the closed loop eigenvalues either tend to
transmission zeros, or to minus infinity in a Butterworth pattern. This
result is a direct consequence of the following relation which 1is true for any

LQ system [11]
(I+G¢(jw)B)HR°(I+G¢(jw)B) - &, +-;- [¢(jw)B]HQ°¢(jw)B. (4.16)

This equation can also be used to derive relationships between p and the
singular value functionals.

Lemma 4.1: Congider the LQ system described in equations (4.1)-(4.4), where

Q= q

R = pr.

(4.17)

Then, for each frequency w for which jw is not an eigenvalue of the open loop

system,

vxmin(Ro) s giz oiR (I+G(p)¥B) < 'Amax(Ro) (4.18)
o
i=1,2,...,m

where 9 (+) is the ith R.o weighted singular value, as defined in equation
R
0

equation (3.45).

Proof: Consider equation (4.16). Since these matrices are equal, their

eigenvalues must be equal,

A ((T+G()B) R (1+G(p)¢B)) = vi(R +2 [vB]"Q vB)v, . (4.19)

| ¢ SV

P, )
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Here, v, 1s the orthonormal eigenvector defined by

i

1 H -
(Ro+p [#B] Qo«pls)vi xivi.

In terms of singular values and Euclidean norms

2 2,1 2
aiR (I1+G(p)¢B) u/rgviu +3 n/cgwnvin X

(o]

(4.20)

(4.21)

Notice that the term H/a;QBvil is bounded for all p whenever jw is not an

eigenvalue of the open loop system. Taking the limit on each side of the

above equation and recalling that

vl =1 = o(/R) s IR v,I <FGR)

implies equation (4.18).

Notice that when Ro-I, equation (4.18) reduces to

lim 01(1+G(p)¢8) = 1.

p—+o
A similar type of result is available when p tends to zero.

Lemma 4.2: Consider the LQ system described in the above lemma.

all w such that jw is not a transmission zero of /6¢(jw)B,

lim g(I+G(p)yB) = =,
(agt]

Proof: From equation (4.21),

1
gRO(I4-G(D)¢B) 25 I/6;¢Bvlﬂ.

Since jw is not a transmission zero of /6;'¢B,

/6;¢Bv1 ¥ 0.

Consequently,

Then for

(4.22)

D A ST TP P ¢

PEPT I )

maak o dBS oK X AT L ¥




(RR}

‘WY A L veey

74

lim g (I+G(p)¥B) = =.
p+0 (o]

But,

gp (I+G(p)¢B) < 3(/R—°')Q(I+G(p)s0B)
[o]

which implies equation (4.22).

Q

If jw is a transmission zero of fab(jw)B of multiplicity 2 then it

is still possible to see from equation (4.21) that

lim 0, (I+G(p)¢yB) = =, (4.23)

0=0 2+1
The remaining £ singular values will be constant,

g (I+G(p)¢B) = ER (Vi) i=1,...,2.

i
Ro o

Note that if either B or Q has rank less than m (where m is the number of

inputs) then

oiR (I+G(p)¢B) = ER v,) ¥p
0 [o]

i=1,...,m~-min{rank{Q}, rank{B}}.

It is also possible to show that the R° scaled singular values

are nondecreasing functions as p tends to zero.

Lemma 4.3: Consider the LQ system described in equations (4.1)-(4.4) with

(Q,R) as in (4.17). Then

>

Ol 2 02 0

1o (I+G(pl)¢3) S0y

[+ o

where i=1,..,n.

(I+ G(oz)ws) (4.24)
R

44 1

e .
RSO
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P

1.




Proof: From equation (4.19),

o

2 1 H
1 (I+G(p)¢B)" = Ai(R°+-p— [¢B] Q°¢B).

o

Differentiating each side and utilizing equation (2.56),

1 H. _.H
i, “dp - =5 vy [¢B]Q BV

R o} 1

Where the independent variable on the left side has been dropped for brevity.

The vector v, is defined in equation (4.20). Then,

dci
Ra o —L /G v,
de 2 2 (¢} i
oy P
Ry
which implies
do
iR
rn 2 <0 Vo > 0.
This implies equation (4.24). : O

These facts show that by scaling Ro by a parameter p as in

equation (4.15) the value of g in the LQ system can be adjusted to any

A,I
desired value, as long as /a;wB has full rank and has no transmission zeros
on the jw axis.

This asymptotic technique was applied to the nominal system

described in equations (4.5)-(4.6). Choosing p= .26,1

(Ql’Rl) - (14, -2612)- (4.25)

lThis value was chosen for purposes of comparison with the following
gradient design.

hntn
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This places the closed loop eigenvalues at

Xl = -.992

Xz = -2.32

Ag,q = -11.3%£11.3

with a feedback gain matrix

5.40 7.18 3.83 -.563
G, = . (4.26)
4.28 8.13 2.33 -.428

Graphs of the important quantities ¢ L.I.1° and ¢ are shown in
b Bt ]

A1,10 ° M,I,1
Figures 4.5, 4.6, and 4.7. From Figure 4.5, the low frequency value of

g is greater than ¢ by about 4dB.

-A,IL,l =-A,I,0
This indicates an improvement in robustness, disturbance rejection
and sensitivity reduction properties. However, the design constraints have
been compromised somewhat. From Figure 4.6 we see that the crossover fre-
quency has increased from the nominal value of wci 11 rad/sec to mci 20

rad/sec. From Figure 4.7, the bandwidth has increased from w_ =21 rad/sec to

B

mB=-30 rad/sec. This shows that the system has become more susceptible to
high frequency multiplicative perturbations. Also, the magnitude of the

feedback matrix has increased. In the nominal system,
ucon = 7.12. (4.27)
For the asymptotically designed system,

ﬂGlﬂ = 12.8. (4.28)

This is an 80% increase in magnitude. It indicates that more control energy

is needed to attain the increased value of EA I.1°
’ 1

0o

w11
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The design procedure developed in Section 3 was also applied to

this example via Theorem 3.1. The gradient of ¢ was computed with

-A,1,0
respect to M= /6, where R was considered a constant parameter. At w= .1,

the gradient matrix was found to be

0.200 0.512 0.313 -0.0525

0.512 1.23 0.131 -0.0796
V.o - (4.29)
M=A,I,0 0.313  0.131  1.19  -0.0640
_—0.0525 -0.0796 -0.0640 -0.0281
The Q2 matrix was calculated from equation (3.47) with e=1,
B i
1.80 1.80 1.13 -.178
1.80 5.26 .743 -.295
Q, = , (4.30)
1.13 .743 4$.91 -.233
L~.l78 -.295 -.233 1.07

It was found by trial and error that this value of € produced the greatest

increase of ¢ Plots of ¢ are shown in

a,1,2° A,1,2° °L,1,2 M,I,2

Figures 4.8, 4.9, and 4.10. The closed loop eigenvalues are now at

, and o

Al = ~,871

12 = =2.46

Ay , = =8.48+18.51

3,4
with

3.03 4.31 2.64 -0.167
G, = (4.31)
2.84 5.80 1.31 -0.181
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IG2I = §.31. (4.32)

As before, the low frequency value of ¢ is 4dB greater than

2A,I,2

%A.1.0° The closed loop bandwidth has increased slightly from the nominal
| B ]

value of wB5 21 to wB; 22 rad/sec. The crossover frequency has remained
approximately the same as the nominal value at wc5 11 rad/sec. This indicates
that the tolerance of the gradient designed system to high frequency multi-
plicative errors has remained about the same as the nominal system.

Comparing the eigenvalue placements of the. three designs, we see
that the asymptotic system has become faster than the nominal system in that
the eigenvalues at -8.01+ §8.24 have moved out to -11.3+311.3. The
gradient designed system shows that the extra control energy needed to push
the eigenvalues to the left is unnecessary, since the same value of EA,I
was achieved in the gradient design where the fast eigenvalues moved only
slightly to the left. That less control energy is needed in the gradient
designed system is reflected in the fact that the magnitude of the gain
matrix G2 in equation (4.32) has increased by only 177 from the nominal
value in equation (4.27).

The size of the G matrix is also important in relative robustness
and sensitivity measurements, where the norm of the largest allowable per-

turbation is compared to the norm of the nominal plant from Figures 4.1 and

4.2

1P g(I+GO¢B)

al | 100 -
* - -
ip i 0(G°¢B) g

.83, w<.l. (4.33)
L,I,0

Hence, the nominal system could be subjected to a low frequency (w<.l)

additive perturbation with a magnitude 83% as large as the nominal system
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ll itself, and remain stable. Also,
NG
- g -1
3 “AL0 2 g6 w< .1 (4.34)
-3 p
°L,1,0

and so the nominal system would be insemsitive to perturbations with up to

76Z magnitude variation. In the asymptotically designed system,

%ﬁ'l'-l :.59 g—A*LLl 5.3,  w<.l. (4.35)

3 L,I.1 L,I,1

‘3 For this last desigm,

ii

| A2 5 55 70 S R w<.1. (4.36)

i 9L,1,2 oL,1,2

ii Notice that in each case above, the magnitude of the nominal plant (EL,I,i)
is different because the Gi matrix is part of it. Because of this, the

{S' asymptotic technique actually decreased the relative robustness and sensi-

= tivity tolerances. Since uG2u and hence 6L,I,2 did not increase much in the

- last design, the relative robustness margin was increased from the nominal

. value.

i The fact that MGZH did not increase much over ucon is also

i? reflected by the low frequency value of aA,I,Z’ which is approximately the

g same as 8A,I,0' This indicates an important feature of the design

H technique of Section 3 - the motion of the singular values can be separated.

ﬁ; If it was necessary to increase the value of EA,I,O’ it could also be done
with this technique. Hence the designer has the option of manipulating

i! each system singular value individually.

ad
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5. CONCLUSION

In Section 3 we saw how important closed loop properties such as

robustness and sensitivity translate into requirements on the singular

values of the return difference and inverse Nyquist matrices. -This in turn

imposes requirements on the singular values of the loop transfer matrix. .
Thus a major objective in design is to synthesize a controller that adjusts

the frequency shapes of the singular values of the loop transfer matrix to

meet the requirements imposed by the design griﬁeria. If the mathematical

41 S

structure of the controller is predetermined, it is possible to calculate
the gradient of the singular value functional with respect to the adjustable
parameters of the controller. The gradient vector gives the direction to
change the control p;féﬁeter vector (whose elements are the adjustable i
parameters) that will have the greatest possible effect on a given singular

value. Since the control parameter vector is assumed to be constant, a

fixed frequency must be substituted into the gradient formula. Then, we are

11

guaranteed only that the singular value functional will be affected in some
neighborhood of that frequency. To adjust the entire singular value curve as
a function of frequency, the gradisat must be iteratively calculated at
different frequencies, and the control parameter vector adjusted each time.
The linear quadratic optimal control problem can be used as a
method to obtain a full state feedback controller for a general design
problem. This method has the advantage of being a systematic, numerically

feasible way to choose a feedback gain matrix that has certain minimum

guaranteed robustness and sensitivity margins. However, the design problem —

is now translated into how to choose the weighting coefficients (the Q,R

=
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matrices). The dependence of the system singular values on these matrices
is certainly nonobvious. Since the mathematical structure of the controller
is known, the gradient of these singular value functionals with respect to
the Q,R matrix pair can be calculated. This provides the designer with a
tool to adjust the Q,R matrix pair to bend the singular values (as functioums
of frequency) into a more desirable shape.

The new parameter vector (or Q,R pair, in this case) is formed by
adding the gradient times a scalar to the old parameter vector. In the
optimal gradient method, the value of the scalar is determined by considering
the cost functional as a function of the scalar and setting its derivative
equal to zero. The complexity of the relationship between the singular values
and the scalar parameter prevent us from doing this in the LQ problem. Thus
the best value of the scalar must be determined by trial and error in this
design procedure.

In Theorem 3.4, it was necessary to assume that the matrix B had
rank n to insure the existence of the inverse of To=-QBG (i.e. the system
had at least as many inputs as it did states). This requirement is not

likely to be satisfied in practice. It may be possible to relax this

assumption by using the pseudoinverse. This possibility is currently under

investigation.

The LG design presumes that full state feedback is available.
In practice, this is often not the case, and the missing states must be
created by an observer. Unfortunately, when an observer is inserted in
the LQ loop, all robustness and sensitivity guarantees are lost. This
makes the issue of how to adjust the LQ feedback matrix to increase robust-

ness and sensitivity properties much more important. The calculation of




the gradient with an observer in the loop is a straightforward extension
of the formulas for the full state feedback case. However, the effective-
ness of these formulas remains to be experimentally verified.

When white, uncorrelated Gaussian noise signals are inserted into
the system and state measurement equations of the LQ regulator, the optimal
solution is the linear-quadratic-Gaussian (LQG) controller. The controller
is just the LQ feedback matrix plus an observer whose gains depend upon a
dual Riccati equation [23]. The dual equation is a function of the noise
covariance matrices. It is possible to calculate the gradient of the
singular value functionals witn respect to these matrices using the same
type of derivation as in Section 3. This could be useful it the dominant
LQ poles are fixed by some primary design constraint. The effect of
altering the noise covariance matricéé would be that the observer would no
longer provide optimal noise reduction. Hence, the robustness and sensi-
tivity properties of the LQG system could be affected at the expense of
noise performance.

In Section 4 the LQ adjustment procedure was applied to an example
to illustrate its effectiveness. In this example, the additive perturbation
was assumed to surround the plant and the controller. This assumption was
made because it makes the singular value bound simpler. If the perturbation
added directly to the nominal plant, we would have had to take the gradient
of the singular value ratio

o(L+G B)

@ ¢-D

(see equation (2.19)). This would complicate the gradient calculation quite
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a bit. Also, this bound (5.1) is conservative, which makes it less
meaningful. However, the example showed that it was possible to increase
o(a,i,0) for w< .l while keeping 3(G) relatively constant just using the
gradient of g (i,0) since this gradient decoupled the motion of the singular
values. Thus, a more complicated gradient calculation of equation (5.1)
could be avoided. Note that this problem does not occur in the case of
multiplicative perturbations - the frequency plot of g(m,-,o) provides a

direct nonconservative measure of the desired properties.
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